Abstract
AbstractThe distributional similarity methods have proven to be a valuable tool for the induction of semantic similarity. Until now, most algorithms use two-way co-occurrence data to compute the meaning of words. Co-occurrence frequencies, however, need not be pairwise. One can easily imagine situations where it is desirable to investigate co-occurrence frequencies of three modes and beyond. This paper will investigate tensor factorization methods to build a model of three-way co-occurrences. The approach is applied to the problem of selectional preference induction, and automatically evaluated in a pseudo-disambiguation task. The results show that tensor factorization, and non-negative tensor factorization in particular, is a promising tool for Natural Language Processing (nlp).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.