Abstract

In this paper, we propose an inhomogeneous restoration (deconvolution) model under the Bayesian framework exploiting a non-parametric adaptive prior distribution derived from the appealing and natural image model recently proposed by Buades et al. [Buades, A., Coll, B., Morel, J.-M., 2005. A review of image denoising algorithms, with a new one. SIAM Multiscale Model. Simul. (SIAM Interdisc. J.), 4(2), 490–530] for pure denoising applications. This prior expresses that acceptable restored solutions are likely the images exhibiting a high degree of redundancy. In other words, this prior will favor solutions (i.e., restored images) with similar pixel neighborhood configurations. In order to render this restoration unsupervised, we have adapted the L-curve approach (originally defined for Tikhonov-type regularizations), for estimating our regularization parameter. The experiments herein reported illustrate the potential of this approach and demonstrate that this regularized restoration strategy performs competitively compared to the best existing state-of-the art methods employing classical local priors (or regularization terms) in benchmark tests.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.