Abstract

In this study, a non-linear model was developed that predicts the five-year change of height to crown base (HCB) of Norway spruce (Picea abies [L.] Karst.). Data were available from the Austrian National Forest Inventory and comprised 2,419 trees from 1,637 permanent sample plots measured during 1981 and 2002. The dynamic model explained 36% of the variation in the observed change of HCB. It is well behaved and meets biological expectations. Based on five independent data sets, the predictive ability of the new dynamic model was compared to an already existing static crown ratio model. For this comparison, the models were applied as follows: the new ∆ HCB model was used to predict the change in HCB directly. For the semi-dynamic method, the static model was applied at the end and at the start of the growth period to obtain two estimates of HCB. The difference of these two estimates was then added to the initial HCB. For the static method, the model was only applied at the end of the prediction period to obtain the new estimate of HCB. Except for one plot, the new ∆ HCB model yielded the smallest BIAS and the highest precision, followed by the semi-dynamic and the static method. Because the independent data sets cover a broad range of age classes and thinning regimes, the validation results also indicate that the new ∆ HCB is robust and the effect of stand management is adequately represented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call