Abstract
Additive manufacturing enables the fabrication of lattice structures which are of particular interest to fabricate medical implants and lightweight aerospace parts. Product integrity is critical in these applications. This requests very challenging quality control for such complex geometries, particularly on detecting internal defects. It is important not only to detect whether there are missing struts for a product with a large size of lattices, but also to identify the number of missing struts for safety-critical applications. Resonant ultrasound spectroscopy is a promising method for fast and cost-effective non-destructive testing of complex geometries but data analytics methods are needed to systematically analyze resonant ultrasound signals for defect identification and classification. This study utilizes resonant acoustic method to obtain resonant frequency spectrum of test lattice structures. In addition, regularized linear discriminant analysis, combined with adaptive sampling and normalization, is developed to classify the number of missing struts. The result shows 80.95% testing accuracy on validation study, which suggests that the resonant acoustic method combined with machine learning is a powerful tool to inspect lattices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.