Abstract
Additive manufacturing brings inspection issues for quality assurance of final parts because non-destructive testing methods are faced with shape complexity, size, and high surface roughness. Thus, to drive additive manufacturing forward, advanced non-destructive testing methods are required. Methods based on resonant ultrasound spectroscopy (RUS) can take on all the challenges that come with additive manufacturing. Indeed, these full body inspection methods are adapted to shape complexity, to nearly any size, and to high degrees of surface roughness. Furthermore, they are easy to implement, fast and low cost. In this paper, we present the benefit of a resonant ultrasound spectroscopy method, combined with a statistical analysis through Z score implementation, to classify supposedly identical parts, from a batch comprised of several individual builds. We also demonstrate that the inspection can be further accelerated and automated, to make the analysis operator independent, whether the analysis of the resonant ultrasound spectroscopy data is performed supervised or unsupervised with machine learning algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.