Abstract
The Raviart–Thomas finite elements provide an appropriate spatial discretization of the mixed-dual form of the diffusion equation. This discretization can then be coupled to an efficient solution method. The high performances achieved by such an approach triggered research on its possible generalization to the transport equation using a spherical harmonic (or P N) angular approximation. In view of the difficulty of developing a straightforward generalization within the mixed-dual framework, we here consider 2D non-conforming (i.e., allowing interface discontinuities) finite elements coupled to the second-order form of the transport equation. This non-conforming approach keeps the mixed-dual property of the relaxation of the flux interface continuity constraint. We investigate different non-conforming elements and compare them to the well-known Lagrangian conforming elements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.