Abstract

In this work different modelling techniques are investigated to simulate the dynamic behaviour of slender structures on which electrostatic forces are acting. In particular, non-conforming elements are tested to model micro-mechanical devices (or MEMS) having a very large aspect ratio. These elements are constructed on linear shape functions enriched by internal second-order polynomials. As a consequence the element compatibility is not exactly satisfied, but such elements can efficiently model beam- or shell-like structures with a small number of degrees of freedom. The advantage of non-conforming elements compared to shell or beam elements is that they are volume elements and can therefore easily be combined with other volume finite elements. For micro-mechanical systems the structure must be coupled to the electrostatic domain with the so-called electro-mechanical elements that solve for the electrostatic potential and generate the electrostatic forces. This paper shows that constructing coupled electro-mechanical models for high aspect ratio systems is then greatly simplified when non-conforming finite elements are used. The theory is presented for small deformations and also for large displacements where geometric non-linearities must be accounted for. The elements proposed in this paper are based on non-conforming formulations published earlier. The efficiency of the non-conforming approach combined with specific electro-mechanical elements is highlighted in the analysis of two simple MEMS for which the pull-in voltage is computed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.