Abstract
Environmental stress induces an arrest of the cell cycle. Thus, release from this arrest is essential for cell survival. The cell-cycle-arrest occurs via the down regulation of the cyclins that drive the main cyclin dependent kinase, CDK1/Cdc28. However, it was not clear how cells escape this potentially fatal arrest. Here we show that prior to the restoration of CDK1/Cdc28 cyclins, a non-canonical CDK, Pho85, initiates a cascade to restart the cell cycle. We demonstrate that following stress, Pho85 phosphorylates the Sch9 kinase, which in turn directly phosphorylates the transcriptional inhibitor Whi5, the yeast analog of RB1/retinoblastoma, and a CDK1 target. This promotes Whi5 translocation from the nucleus, and the release of the stress-induced arrest at G 1 phase. In addition, we find that in parallel with Pho85, CDK1/Cdc28 also plays a role in the control of Whi5. Together, these findings provide insights into how cells re-enter the cell cycle during recovery from stress and reveal that a non-canonical CDK and cyclin takes on essential roles and acts via a pathway that functions in parallel with CDK1/Cdc28.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.