Abstract

Several examples of transcription factors that show stochastic, unsynchronized pulses of nuclear localization have been described. Here we show that under constant calcium stress, nuclear localization pulses of the transcription factor Crz1 follow stochastic variations in cytosolic calcium concentration. We find that the size of the stochastic calcium bursts is positively correlated with the number of subsequent Crz1 pulses. Based on our observations, we propose a simple stochastic model of how the signaling pathway converts a constant external calcium concentration into a digital number of Crz1 pulses in the nucleus, due to the time delay from nuclear transport and the stochastic decoherence of individual Crz1 molecule dynamics. We find support for several additional predictions of the model and suggest that stochastic input to nuclear transport may produce noisy digital responses to analog signals in other signaling systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.