Abstract

This paper presents the dynamic analysis of rotating structures using node-dependent kinematics (NDK) one-dimensional (1D) elements. These elements have the capabilities to assume a different kinematic at each node of a beam element, that is, the kinematic assumptions can be continuously varied along the beam axis. Node-dependent kinematic 1D elements have been extended to the dynamic analysis of rotors where the response of the slender shaft, as well as the responses of disks, has to be evaluated. Node dependent kinematic capabilities have been exploited to impose simple kinematic assumptions along the shaft and refined kinematic models where the in- and out-of-plane deformations appear, that is, on the disks. The governing equations of the rotordynamics problem have been derived in a unified and compact form using the Carrera unified formulation. Refined beam models based on Taylor and Lagrange expansions (LEs) have been considered. Single- and multiple-disk rotors have been investigated. The effects of flexible supports have also been included. The results show that the use of the node-dependent kinematic elements allows the accuracy of the model to be increased only where it is required. This approach leads to a reduction of the computational cost compared to a three-dimensional model while the accuracy of the results is preserved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call