Abstract
AbstractThis paper describes the development of an efficient and accurate algebraic multigrid finite element solver for analysis of linear elasticity problems in two‐dimensional thin body elasticity. Such problems are commonly encountered during the analysis of thin film devices in micro‐electro‐mechanical systems. An algebraic multigrid based on element interpolation is adopted and streamlined for the development of the proposed solver. A new node‐based agglomeration scheme is proposed for computationally efficient, aggressive and yet effective generation of coarse grids. It is demonstrated that the use of appropriate finite element discretization along with the proposed algebraic multigrid process preserves the rigid body modes that are essential for good convergence of the multigrid solution. Several case studies are taken up to validate the approach. The proposed node‐based agglomeration scheme is shown to lead to development of sparse and efficient intergrid transfer operators making the overall multigrid solution process very efficient. The proposed solver is found to work very well even for Poisson's ratio >0.4. Finally, an application of the proposed solver is demonstrated through a simulation of a micro‐electro‐mechanical switch. Copyright © 2008 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Numerical Methods in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.