Abstract
This paper presents a memetic multiobjective optimization algorithm based on NNIA for examination timetabling problems. In this paper, the examination timetabling problem is considered as a two-objective optimization problem while it is modeled as a single-objective optimization problem generally. Within the NNIA framework, the special crossover operator is utilized to search in the solution space; two local search techniques are employed to optimize these two objectives and a diversity-keeping strategy which consists of an elitism group operator and an extension optimization operator to ensure a sufficient number of solutions in the pareto front. The proposed algorithm was tested on the most widely used uncapacitated Carter benchmarks. Experimental results prove that the proposed algorithm is a competitive algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.