Abstract

Presenilin (PS) provides the catalytic core of the gamma-secretase complex. Gamma-secretase activity leads to generation of the amyloid beta-peptide, a key event implicated in the pathogenesis of Alzheimer disease. PS has ten hydrophobic regions, which can all theoretically form membrane-spanning domains. Various topology models have been proposed, and the prevalent view holds that PS has an eight-transmembrane (TM) domain organization; however, the precise topology has not been unequivocally determined. Previous topological studies are based on non-functional truncated variants of PS proteins fused to reporter domains, or immunocytochemical staining. In this study, we used a more subtle N-linked glycosylation scanning approach, which allowed us to assess the topology of functional PS1 molecules. Glycosylation acceptor sequences were introduced into full-length human PS1, and the results showed that the first hydrophilic loop is oriented toward the lumen of the endoplasmic reticulum, whereas the N terminus and large hydrophilic loop are in the cytosol. Although this is in accordance with most current models, our data unexpectedly revealed that the C terminus localized to the luminal side of the endoplasmic reticulum. Additional studies on the glycosylation pattern after TM domain deletions, combined with computer-based TM protein topology predictions and biotinylation assays of different PS1 mutants, led us to conclude that PS1 has nine TM domains and that the C terminus locates to the lumen/extracellular space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.