Abstract

Abstract We report on a Neutron star Interior Composition Explorer (NICER) observation of the Galactic X-ray binary and stellar-mass black hole candidate, MAXI J1535−571. The source was likely observed in an “intermediate” or “very high” state, with important contributions from both an accretion disk and hard X-ray corona. The 2.3–10 keV spectrum shows clear hallmarks of relativistic disk reflection. Fits with a suitable model strongly indicate a near-maximal spin parameter of and a disk that extends close to the innermost stable circular orbit, (1σ statistical errors). In addition to the relativistic spectrum from the innermost disk, a relatively narrow Fe K emission line is also required. The resolution of NICER reveals that the narrow line may be asymmetric, indicating a specific range of emission radii. Fits with a relativistic line model suggest an inner radius of for the putative second reflection geometry; full reflection models suggest that radii a few times larger are possible. The origin of the narrow line is uncertain, but a warp likely provides the most physically plausible explanation. We discuss our results in terms of the potential for NICER to reveal new features of the inner and intermediate accretion disk around black holes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call