Abstract

BackgroundBacterial lipases received much attention for their substrate specificity and their ability to function in extreme environments (pH, temperature...). Many staphylococci produced lipases which were released into the culture medium. Reports of thermostable lipases from Staphylococcus sp. and active in alkaline conditions are not previously described.ResultsA newly soil-isolated Staphylococcus sp. strain ESW secretes an induced lipase in the culture medium. The effects of temperature, pH and various components in a detergent on the activity and stability of Staphylococcus sp. lipase (SL1) were studied in a preliminary evaluation for use in detergent formulation solutions. The enzyme was highly active over a wide range of pH from 9.0 to 13.0, with an optimum at pH 12.0. The relative activity at pH 13.0 was about 60% of that obtained at pH 12.0. It exhibited maximal activity at 60°C. This novel lipase, showed extreme stability towards non-ionic and anionic surfactants after pre-incubation for 1 h at 40°C, and relative stability towards oxidizing agents. Additionally, the crude enzyme showed excellent stability and compatibility with various commercial solid and liquid detergents.ConclusionsThese properties added to the high activity in high alkaline pH make this novel lipase an ideal choice for application in detergent formulations.

Highlights

  • Lipases have been found in many species of animals, plants, bacteria, yeast, and fungi, the enzymes from microorganisms are the most interesting because of their potential applications in various industries such as food, dairy, pharmaceutical, detergents, textile, biodiesel, and cosmetic industries and in synthesis of fine chemicals, agrochemicals, and new polymeric materials [4,5,6]

  • Bacterial lipases received much attention for their substrate specificity and their ability to function in extreme environments

  • We report the characterisation of a thermoactive, alkaline and detergent-stable lipase (SL1) from a newly isolated staphylococcus sp strain ESW, and investigate its compatibility with various surfactants, oxidizing agents, commercial liquid and solid detergents to evaluate its potential for detergent formulation

Read more

Summary

Results

A newly soil-isolated Staphylococcus sp. strain ESW secretes an induced lipase in the culture medium. The effects of temperature, pH and various components in a detergent on the activity and stability of Staphylococcus sp. Lipase (SL1) were studied in a preliminary evaluation for use in detergent formulation solutions. The enzyme was highly active over a wide range of pH from 9.0 to 13.0, with an optimum at pH 12.0. The relative activity at pH 13.0 was about 60% of that obtained at pH 12.0. This novel lipase, showed extreme stability towards non-ionic and anionic surfactants after pre-incubation for 1 h at 40°C, and relative stability towards oxidizing agents. The crude enzyme showed excellent stability and compatibility with various commercial solid and liquid detergents

Background
Methods
Results and Discussion
Conclusion
Dharmaraj S
24. Illanes A
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call