Abstract

Abstract PURPOSE We have recently discovered a new lymphocyte that co-express BCR and TCR (Ahmed et al, Cell, 2019: 177:11583) and referred as X cell to denote its crossover phenotype. Importantly, X cells express a public BCR that also encodes a potent autoantigen in its CDR3 sequence that is 10 fold more potent than native insulin peptide (InsB:9–23) in binding to DQ8 and activating autologous CD4 T cells. The x-autoantigen cross-activate insulin specific CD4 T cells as a peptide in the context of HLA-DQ8 molecules or as a soluble intact mAb (x-mAb). The goal of this study is to characterize autoreactive CD4 T cells that are responsive to x-mAb to determine their phenotype, cytokine profile and TCR repertoire and whether they express public TCRs. METHODS We used EBV-lymphoblastoid X cell clone as a source of x-mAb (IgM) and FACS based protocol to identify IgM reactive CD4 T cells (referred as IgMpos) and their functional properties. ImmunoSEQ assay used to characterize TCR repertoires. RESULTS Preliminary data show that frequency of IgMpos CD4 T cells is significantly higher in T1D as compared to Healthy subjects. In addition, IgMpos CD4 T cells exhibit an activated phenotype as compared to autologous IgMneg CD4 T cells, including expression of CD45RO, CD44, and CD69. Analysis of TCRVβ repertoire shows that IgMpos CD4 T cells are enriched for public clonally expanded TCRs as compared to IgMneg counterparts. CONCLUSIONS X cells in T1D patients are predominated by a single public BCR and that the secreted version of this BCR (x-mAb) is autoreactive against a specific subset of CD4 T cells that predominated by few clonotypes that express public TCRs. Our results are revealing previously unknown mechanism that appears to be a play critical role in pathogenesis of T1D.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call