Abstract
The tag-based recommendation systems that are built based on tensor models commonly suffer from the data sparsity problem. In recent years, various weighted-learning approaches have been proposed to tackle such a problem. The approaches can be categorized by how a weighting scheme is used for exploiting the data sparsity – like employing it to construct a weighted tensor used for weighing the tensor model during the learning process. In this paper, we propose a new weighted-learning approach for exploiting data sparsity in tag-based item recommendation system. We introduce a technique to represent the users’ tag preferences for leveraging the weighted-learning approach. The key idea of the proposed technique comes from the fact that users use different choices of tags to annotate the same item while the same tag may be used to annotate various items in tag-based systems. This points out that users’ tag usage likeliness is different and therefore their tag preferences are also different. We then present three novel weighting schemes that are varied in manners by how the ordinal weighting values are used for labelling the users’ tag preferences. As a result, three weighted tensors are generated based on each scheme. To implement the proposed schemes for generating item recommendations, we develop a novel weighted-learning method called as WRank (Weighted Rank). Our experiments show that considering the users' tag preferences in the tensor-based weightinglearning approach can solve the data sparsity problem as well as improve the quality of recommendation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have