Abstract

To solve online continuous time-varying convex quadratic-programming problems constrained by a time-varying linear-equality, a novel varying-parameter convergent-differential neural network (termed as VP-CDNN) is proposed and analyzed. Different from fixed-parameter convergent-differential neural network (FP-CDNN), such as the gradient-based recurrent neural network, the classic Zhang neural network (ZNN), and the finite-time ZNN (FT-ZNN), VP-CDNN is based on monotonically increasing time-varying design-parameters. Theoretical analysis proves that VP-CDNN has super exponential convergence and the residual errors of VP-CDNN converge to zero even under perturbation situations, which are both better than traditional FP-CDNN and FT-ZNN. Computer simulations based on different activation functions are illustrated to verify the super exponential convergence performance and strong robustness characteristics of the proposed VP-CDNN. A robot tracking example is finally presented to verify the effectiveness and availability of the proposed VP-CDNN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.