Abstract

Sylvester equation is widely used to study the stability of a nonlinear system in the control field. In this paper, a finite-time Zhang neural network (FTZNN) is proposed and applied to online solution of time-varying Sylvester equation. Differing from the conventional accelerating method, the design of the proposed FTZNN model is based on a new evolution formula, which is presented and studied to accelerate the convergence speed of a recurrent neural network. Compared with the original Zhang neural network (ZNN) for time-varying Sylvester equation, the FTZNN model can converge to the theoretical time-varying solution within finite time, instead of converging exponentially with time. Besides, we can obtain the upper bound of the finite convergence time for the FTZNN model in theory. Simulation results show that the proposed FTZNN model achieves the better performance as compared with the original ZNN model for solving online time-varying Sylvester equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.