Abstract
We report on a new type of quantum wells with the width as thin as 10Å, which are composed of SiC only, and consequently have ideal interfaces. These quantum wells are actually stacking faults in SiC. Certain types of stacking faults in SiC polytypes create small 3C-like regions, where the stacking sequences along the c-axis become locally cubic in the hexagonal host crystals. Since the conduction band offsets between the cubic and hexagonal polytypes are very large with the conduction band minima of 3C–SiC lower than that of the other polytypes, such thin 3C inclusions can introduce locally lower conduction bands, thus acting as quantum films perpendicular to the c-axis. One mechanism for the occurrence of stacking faults in the perfect SiC single crystals is the motion of partial dislocations in the basal planes, the partial dislocations leaving behind stacking fault regions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have