Abstract
Abstract A new type of semi-submersible drilling platform is designed. The numerical simulation software is used to analyze the heave response of the new platform in the frequency domain and time domain, and the semi-submersible drilling platforms with double-floating four-column structure and heave plate structure are compared with the new platform. This paper introduces the design principles of the new platform and the theoretical basis, mathematical model and boundary conditions during correlation analysis. The numerical simulation results show that the maximum and mean values of the heave response of the new platform are significantly reduced in the frequency domain analysis compared with the double-floating four-column and the heave-plate structure platform; and the new platform has a significant increase in the natural heaving period of the new platform, which can effectively prevent the occurrence of resonance. In the mooring time domain coupling analysis, the surge, sway and roll response of the new platform is small, and the heave response is greatly reduced. In the spectral analysis, the new platform has a smaller peak response and better wave frequency characteristics. The new platform has excellent anti-heave performance, reasonable structure and feasibility, and can provide reference for the design and selection of new generation semi-submersible drilling platform.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.