Abstract

We design a new two-sided coupling channel drop filter (CDF) based on a two-dimensional (2D) photonic crystal (PC). Three channels formed by line defects for light propagation, two L4 resonators positioned at both sides of the input waveguide for light coupling, and one point defect micro-cavity in the bus waveguide for wavelength-selective reflection are introduced into the PC structure. The optical characteristics of this proposed structure are calculated by finite-difference time-domain (FDTD) method combined with the perfectly matched layers (PMLs) as the boundary conditions. Three wavelengths centered at 1550, 1575 and 1610 nm within the limit of communication windows are successfully separated in three channels by adjusting the size of coupling rods and the positions of L4 resonators and micro-cavity. High transmission efficiency and more than 20 nm channel spacing are achieved. These demonstrate that our proposed structure is suitable for photonic integrated circuits (PICs) and coarse wavelength division multiplexing (WDM) optical communication systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call