Abstract

A new transducer, using the effect of frustrated total internal reflection of electromagnetic waves, was developed for displacement and force measurements in muscle research. The physical theory for this effect predicts the formation of an evanescent electromagnetic field in the gap between two separated optical surfaces. This evanescent electromagnetic field enables the transmission of light across the gap between the two media, an effect not contained in ray optics formalism. In the apparatus described here, the optical surfaces were obtained by bevelling 2 optical fibres to angles higher than the specific critical angle of the media used. Since the amount of transmitted light depends strongly on the distance between the surfaces, very small forces are detectable if one fibre is used as a cantilever. To test the transducer a small myofibrillar bundle (20 microm diameter) was mounted isometrically on it and contraction activated by release of "caged" Ca2+. Force and displacement steps of 180-220 nN and 9-11 nm respectively were measured with resolutions of 10 nN and 288 pm, respectively. From theoretical and practical considerations, it is expected that the presented principle will be able to achieve even much higher sensitivity for the determination of force (better than picoNewton) and distance (femtometre).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.