Abstract

A new type of Fresnel array has been devised and constructed as an answer to the need to reduce the investment costs of solar thermal collectors, without jeopardizing their efficiency in capturing solar radiation at high temperatures. The array of mirror bands is fixed onto a horizontal platform, which rotates around a virtual vertical axis, so that the sun is in the extrapolated vertical plane of symmetry of the array. The receptor central line is also placed in said plane, and it is physically made of at least one tube at each side of the plane. The geometrical relation between the mirrors and the receptor is therefore fixed. The platform rotates with the same speed as that of the sunlight’s azimuthal component. On the contrary, the angle of incidence of the sunlight on the mirrors changes as the sun rises and declines in its daily apparent motion, but this effect does not disturb the radiation concentration kinematics, although it induces a shift along the receptor. This is a new configuration based on the use of simple and cheap flat mirrors to obtain circular cylindrical mirrors. These mirrors are made of originally flat mirrors that are bent by applying an inexpensive and simple bending technique patented by our research group. The radius of curvature of each mirror is tuned to the distance from the mirror to the receiver central line. The integration of different scientific domains (such as structural analysis) and elementary technologies (such as 3D printing) in this innovative solar radiation concentrator and receiver can lead to a large reduction in costs. Nevertheless, the first experimental campaign has shown additional problems in the receiver configuration, which should be addressed in a next stage of research. This paper explains the methodology used and procedures in the development of the first prototype of the Sundial.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.