Abstract

Skull fracture is a frequently observed type of severe head injury. Historically, a variety of impact test set-ups and techniques have been used for investigating skull fracture. The most frequently used are the free-fall technique, the guided fall or drop tower set-up and the piston-driven impactor set-up. This document proposes a new type of set-up for cadaver head impact testing which combines the strengths of the most frequently used techniques and devices. The set-up consists of two pendulums, which allow for a 1 degree of freedom rotational motion. The first pendulum is the impactor and is used to strike the blow. The head is attached to the second pendulum using a polyester resin. Local skull deformation and impact force are measured with a sample frequency of 65 kHz. From these data, absorbed energy until skull fracture is calculated. A set-up evaluation consisting of 14 frontal skull and head impact tests shows an accurate measurement of both force and local skull deformation until fracture of the skull. Simplified mechanical models are used to analyse the different impacting techniques from literature as well as the new proposed set-up. It is concluded that the proposed test set-up is able to accurately calculate the energy absorbed by the skull until fracture with an uncertainty interval of 10%. Second, it is concluded that skull fracture caused by blunt impact occurs before any significant motion of the head. The two-pendulum set-up is the first head impact device to allow a well-controlled measurement environment without altering the skull stress distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.