Abstract

In this study, a biofilm reactor containing Acinetobacter sp.H12 was established to investigate the simultaneous denitrification, the removal of calcium and fluoride performance. The main precipitation components in the reactor were determined by SEM, XPS and XRD. The effects of HRT (6 h, 9 h and 12 h), pH (6.0, 7.0, 8.0), influent F− concentration (3 mg/L, 5 mg/L, 10 mg/L) on synchronously removal of nitrate and F− and Ca2+ during reactor operation were studied. Optimum operating conditions were achieved with a nitrate removal ratio of 100%, F− removal ratio of 81.91% and Ca2+ removal ratio of 67.66%. Nitrogen was the main gaseous product analyzed by gas chromatography. Extracellular polymers (proteins) were also identified as sites for biological precipitation nucleation by fluorescence spectroscopy. Moreover, microbial distribution and community structure analysis showed that strain H12 was the dominat strain in the biofilm reactor. And combined with the performance prediction of the reactor, strain H12 played a major role in the process of simultaneous denitrification, F− and Ca2+ removal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.