Abstract
The impact of using a Femtosecond laser on final functional results of penetrating keratoplasty is low. The corneal incisions presented here result from laser ablations with ultrafast desorption by impulsive vibrational excitation (DIVE). The results of the current study are based on the first proof-of-principle experiments using a mobile, newly introduced picosecond infrared laser system, and indicate that wavelengths in the mid-infrared range centered at 3 μm are efficient for obtaining applanation-free deep cuts on porcine corneas.
Highlights
More than a century after the first successful corneal transplant was performed by Eduard Zirm in 1905, numerous advances in surgical techniques and medical therapies have dramatically improved the prognosis and success of corneal grafting [1]
First attempts to incorporate laser technology into the field of corneal transplants were described by Naumann et al [2]
The more darkly stained areas at the edges of the ablation cuts were classified as thermal effects on maximum the first layer of cells adjacent to the Picosecond Infrared Laser (PIRL) incision (Figs. 3 and 4)
Summary
More than a century after the first successful corneal transplant was performed by Eduard Zirm in 1905, numerous advances in surgical techniques and medical therapies have dramatically improved the prognosis and success of corneal grafting [1]. The widespread use of refractive laser eye surgery and the tremendous technological advance with development and incorporation of corneal lamellar procedures have led to the emergence of new transplant techniques and the use of the laser platform in corneal transplant surgery. First attempts to incorporate laser technology into the field of corneal transplants were described by Naumann et al [2]. Astigmatism after penetrating keratoplasty is currently one of the major hurdles that corneal surgeons have to deal with [1]. PLOS ONE | DOI:10.1371/journal.pone.0120944 March 17, 2015
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.