Abstract
A new method for real-time measurements of potassium and sodium containing aerosol particles is described and verified. The method is based on surface ionization technique and may be used to explore the alkali chemistry related to high temperature chemistry processes. The measurement device is a further development of the simple and cost-effective surface ionization detector previously used for online alkali measurements in combustion and gasification research. The discrimination between sodium and potassium is possible due to differences in their surface desorption kinetics and facilitated by rapidly reversing the field potential between the ion source and the nearby collector. The instrument is evaluated in a series of laboratory experiments using size-selected alkali salt particles containing KCl, NaCl, K2SO4, Na2SO4, KNO3 and NaNO3. The filament temperature was found to be a key influencing factor in order to optimize the strength and Na–K deviation of the observed ion current. The ability to simultaneously report absolute concentrations of Na and K makes the instrument attractive for solid fuel conversion of alkali-rich fuels such as low-grade biomass and to explore behavior deviations of Na and K in high temperature processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.