Abstract

This paper studies the very large deflection behavior of prismatic and non-prismatic cantilever beams subjected to various types of loadings. The formulation is based on representing the angle of rotation of the beam by a polynomial on the position variable along the deflected beam axis. The coefficients of the polynomial are obtained by minimizing the integral of the residual error of the governing differential equation and by applying the beam’s boundary conditions. Several numerical examples are presented covering prismatic and non-prismatic cantilever beams subjected to uniform, non-uniform distributed loads and tip concentrated loadings in vertical and horizontal directions. The loads considered in this study are restricted to the non-follower type loads. Cases with different loadings and geometries are compared with MSC/NASTRAN computer package. However, for some very large deflection case, the MSC/NASTRAN failed to predict the deflected shape due to divergence problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call