Abstract

In order to characterise mechanical properties of materials (e.g. formability) under hot stamping conditions, significant efforts have been made to the development of the biaxial tensile testing method using cruciform specimens. However, no method for necking strain determination and no cruciform specimen design have been widely accepted. In this study, a new technique for characterising mechanical behaviour of materials under hot stamping conditions has been proposed. It includes two main parts: 1) a novel spatio-temporal method for determining necking and fracture strains, and 2) a cruciform specimen design for formability evaluation using biaxial testing method. In the first part, the theoretical base of the novel spatio-temporal method has been discussed, and the method has been validated by applying to uniaxial tensile tests on AA6082 specimens. The method has also been compared with several existing popular methods, in the determination of limit strain at onset of localised necking. It is found that the novel method has greater simplicity, stability and accuracy for the determination of localised necking strain. In the second part, a proposed cruciform specimen of AA5754 has been tested under the equi-biaxial tension, and both the necking initiation location and the strain path at the location where necking initiates, have been analysed. Furthermore, the novel spatio-temporal method has been applied to the biaxial tensile test for the determination of necking and fracture strains. The results show that the designed cruciform specimen enables to initiate fracture at the centre of the specimen and realisation of linear strain path under equi-biaxial tension.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call