Abstract

This research paper introduces a new topology for multilevel inverters, emphasizing the reduction of harmonic distortion and the optimization of the component count. The complexity of an inverter is determined by the number of power switches, which is significantly reduced in the presented topology, as fewer switches require fewer driver circuits. In this proposed topology, a new single-phase generalized multilevel inverter is analyzed with an equal magnitude of voltage supply. A 9-level, 11-level, or 13-level symmetrical inverter with RL load is analyzed in MATLAB/Simulink 2019b and then experimentally validated using the dSPACE-1103 controller. The experimental verification of the load voltage and current with different modulation indices is also presented. The analysis of the proposed topology concludes that the total required number of components is lower than that necessary for the classical inverter topologies, as well as for some new proposed multilevel inverters that are also compared with the proposed topology in terms of gate driver circuits, power switches, and DC sources, which thereby enhances the goodness of the proposed topology. Thus, a comparison of this inverter with the other topologies validates its acceptance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.