Abstract

In recent times, there has been an increased demand in the search for probing materials for numerous substances in the environment such as the detection of metals ions. In this study, a new class of pyrazolyl-sulfonamide derivatives of para-nitroaniline were synthesized following a multistep approach. The ligands and complexes were characterized using NMR spectroscopy, IR spectroscopy, and mass spectrometry. All the compounds C1–C3 were synthesized in very good yields (85%–92%) and their photo-physical properties measured. All the compounds show fluorescence behaviour with emissions within the UV and far visible range with quantum yields between 7.7% and 25.7%. TD-DFT calculations predictions for the electronic transitions present are in good agreement with experimental observations.Fluorescent probing studies conducted on the compounds show that C1–C3 were analytically sensitive and possessed significant selectivity towards Cu2+ (for C3) and Zn2+ (for C1 and C2) ions with detection limits between 0.011 and 0.103 mg/L for Cu2+ ions and 0.002–0.135 mg/L for Zn2+ ions. Overall, C1 was found to be the most sensitive molecule for the metals studied, having good quantum yield and better selectivity for Zn2+ ion compared to Cu2+.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.