Abstract

A facile method for efficient synthesis of core-shell composite material was proposed. In this method, the silica microspheres were co-modified with metal organic framework (MOF-235) and polyethylene glycol polymer (PEG) and used as mixed-mode stationary phase (MOF-235@PEG@silica) for high-performance liquid chromatography. Elemental analysis, scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and Brunauer-Emmett-Teller etc. methods were used to investigate the properties of the core-shell composite material. The MOF-235@PEG@silica stationary phase showed flexible selectivity for the separation of both hydrophilic and hydrophobic compounds especially for the separation of nine alkaloids, which showed superior hydrophilic separation performance than previous MOF-based composite stationary phases. Some factors including the pH of buffer salt, the ratio of organic phase and water phase in the mobile phase have been investigated, suggesting that the chromatographic retention mechanism of the column was a mixed mode of hydrophilic and reversed phase. The composite material also showed excellent chromatographic repeatability with the RSDs of the retention time found to be 0.2%–0.6% (n = 10) and the standard addition test in the actual sample proved that it can be used for practical sample analysis. In short, it provided a general way for preparing MOFs-based composites as mixed-mode chromatographic stationary phases, and changed the current status of MOF-based composite materials as single mode chromatographic stationary phases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call