Abstract

In this paper, a magnetic nanoparticle surface molecularly imprinted polydopamine RRS probe Fe3O4@MIP was prepared using phosphomolybdic acid (PMo) as the template, Fe3O4 magnetic nanoparticles as the substrate and dopamine hydrochloride (PD) as the monomer and crosslinking agent for the determination of PO43-. Under acidic conditions, phosphomolybdic acid is formed by the reaction of PO43- with ammonium molybdate (MSA), which can be imprinted with the Fe3O4@MIP probe surface and reduced to phosphomolybdic blue (PMoB) by ascorbic acid (Aa). Strong resonance Rayleigh scattering energy transfer (RRS-ET) occurs between the probe and PMoB, resulting in a decrease in the RRS signal value. A new, simple and selective RRS method for the determination of PO43- in water samples was developed. The linear range of this method is 1-22.5 μmol L-1, and the detection limit (DL) is 0.49 μmol L-1. Furthermore, the magnetic enrichment ability of Fe3O4@MIP is discussed. Experimental data show that even 0.2 μmol L-1 of phosphate can be detected within a 20% error range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.