Abstract

Hydrocarbons, originating from oil and gas industries, are considered a potential risk for Nayband Bay, a natural marine park with extended mangroves, located on the north coastlines of the Persian Gulf, Iran. This paper determines the potential sources and spatial distribution of hydrocarbons, especially aliphatic hydrocarbons (AHCs), in Nayband Bay through the simultaneous application of three indices in the coastline surface sediments. To this end, a field study was conducted in the inter-tidal coastal zones and wetlands. Sediment samples were taken from surface layers along four transects with four sampling points at different distances from the gulf. The hydrocarbon compounds of the samples including AHCs, total petroleum hydrocarbons, and heavy metals (Ni, V as crude oil indicators) were analyzed and classified to discover the pollution indicators. Pearson pairwise correlation and cluster analyses along with pollution indices were employed to describe the spatial distribution pattern of hydrocarbons, identify hot spots, and determine the potential origin of AHCs. Different interpolation scenarios based on topographic and oceanic features were proposed to detect the spatial dynamics of AHCs. The results revealed that hydrocarbons mainly originated from anthropogenic sources including oil and gas industries located far from the affected area. It was also concluded that the long-distance pollution transfer was based on oceanic currents and wind direction in the bay. The proposed scenarios showed that the mean concentration values of total organic carbon and total organic material vary in the range 0.19 ppm to 0.4 ppm and 2.88 ppm to 3.20 ppm, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.