Abstract

An explicit three dimensional symplectic finite-difference time-domain method is introduced to solve the Schrödinger equation. The method is obtained by using a symplectic scheme with a propagator of exponential differential operators for the time direction approximation and fourth-order collocated finite differences for the space discretization. Firstly, a high-order symplectic framework for discretizing the Schrödinger equation is presented. Secondly, the comparisons on numerical stability, dispersion are also provided between the new symplectic scheme and other commonly used methods. Finally, numerical examples are given to evaluate the performance of the proposed method and the advantages on the accuracy and stability are also further demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.