Abstract
To discretize Maxwell's equations, a variety of high-order symplectic finite-difference time-domain schemes, which use th-order symplectic integration time stepping and th-order staggered space differencing, are surveyed. First, the order conditions for the symplectic integrators are derived. Second, the comparisons of numerical stability, dispersion, and energy-conservation are provided between the high-order symplectic schemes and other high-order time approaches. Finally, these symplectic schemes are studied by using different space and time strategies. According to our survey, high-order time schemes for matching high-order space schemes are required for optimum electromagnetic simulation. Numerical experiments have been conducted on radiation of electric dipole and wideband S-parameter extraction of dielectric-filled waveguide. The results demonstrate that the high-order symplectic scheme can obtain satisfying numerical solutions under high Courant-Friedrichs-Levy number and coarse grid conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.