Abstract

A method is presented to study the free vibrations of rectangular laminated composite plates with general layups and arbitrary boundary conditions. Based on the first-order shear deformation theory, the governing differential equations and boundary conditions are deduced via Hamilton’s principle. Generalised displacements are expanded as series with Legendre polynomials as the base functions. A generalised eigenvalue problem is obtained by following a variational approach, where energy functional is extremised and boundary conditions are introduced by means of Lagrange multipliers. In order to overcome some difficulties in obtaining the natural frequencies and corresponding mode shapes, a new numerical strategy is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.