Abstract
Based on the three-dimensional real special orthogonal Lie algebraso(3,R), we construct a new hierarchy of soliton equations by zero curvature equations and show that each equation in the resulting hierarchy has a bi-Hamiltonian structure and thus integrable in the Liouville sense. Furthermore, we present the infinitely many conservation laws for the new soliton hierarchy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.