Abstract

A hierarchy of soliton equations together with its Hamiltonian structure is constructed from a new spectral problem associated with the three-dimensional special orthogonal real Lie algebra, so(3,ℝ). The Liouville integrability of the presented soliton hierarchy is proved, based on the Hamiltonian structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.