Abstract
This paper introduces a sixth-order Immersed Interface Method (IIM) for addressing 2D Poisson problems characterized by a discontinuous forcing function with straight interfaces. In the presence of this discontinuity, the problem exhibits a non-smooth solution at the interface that divides the domain into two regions. Here, the IIM is employed to compute the solution on a fixed Cartesian grid. This method integrates necessary jump conditions resulting from the interface into the numerical schemes. In order to achieve a sixth-order method, the proposed approach combines implicit finite differences with the IIM. The proposed scheme is efficient because the matrix arising from discretization remains the same as in the smooth problem, and changes are made to the resulting linear system by introducing new terms on the right side. These supplementary terms account for the discontinuities in the solution and its derivatives, with calculations restricted near the interface. The paper demonstrates the accuracy of the proposed method through various numerical examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.