Abstract
This paper proposes a new single-phase high-power-factor rectifier, which features regulation by conventional pulsewidth modulation (PWM), soft commutation, and instantaneous average line current control. A new zero-current switching PWM (ZCS-PWM) auxiliary circuit is configured in the presented ZCS-PWM rectifier to perform ZCS in the active switches and zero-voltage switching (ZVS) in the passive switches. Furthermore, soft commutation of the main switch is achieved without additional current stress by the presented ZCS-PWM auxiliary circuit. A significant reduction in the conduction losses is achieved because of the following reasons: 1) the circulating current for the soft switching flows only through the auxiliary circuit; 2) a minimum number of switching devices are involved in the circulating current path; and 3) the proposed rectifier uses a single converter instead of the conventional configuration composed of a four-diode front-end rectifier followed by a boost converter. Seven transition states for describing the behavior of the ZCS-PWM rectifier in one switching period are described. The PWM-switch model is used to predict the system performance. A prototype rated at 1 kW, operating at 60 kHz, with an input alternating current voltage of 220 V/sub rms/ and an output voltage of 400 V/sub dc/, has been implemented in laboratory. An efficiency of 98.3% and a power factor over 0.99 have been measured. Analysis, design, and the control circuitry are also presented in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.