Abstract
ObjectiveThe aim of this study was to evaluate silica infiltration into dental zirconia (VITA In-Ceram 2000 YZ, Vita Zahnfabrik) and its effects on zirconia’s surface characteristics, structural homogeneity and bonding to a resin cement. MethodsInfiltration was performed by immersion of the pre-sintered zirconia specimens in silica sols for five days (ZIn). Negative (pure zirconia specimens, ZCon-) and positive controls (specimens kept in water for 5 days, ZCon+) were also performed. After sintering, the groups were evaluated by X-ray diffraction (XRD), grazing angle X-ray diffraction (DRXR), scanning electron microscopy (SEM), contact angle measurements, optical profilometry, biaxial flexural test and shear bonding test. Weibull analysis was used to determine the Weibull modulus (m) and characteristic strength (σ0) of all groups. ResultsThere were no major changes in strength for the infiltrated group, and homogeneity (m) was also increased. A layer of ZrSiO4 was formed on the surface. The bond strength to resin cement was improved after zirconia infiltration, acid conditioning and the use of an MDP primer. ConclusionThe sol-gel method is an efficient and simple method to increase the homogeneity of zirconia. Infiltration also improved bonding to resin cement. Clinical significanceThe performance of a zirconia infiltrated by silica gel improved in at least two ways: structural homogeneity and bonding to resin cement. The infiltration is simple to perform and can be easily managed in a prosthesis laboratory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.