Abstract
To predict or control the response of a complicated numerical model which involves a large number of input variables but is mainly affected by only a part of variables, it is necessary to screening those active variables. This paper proposes a new space-filling sampling strategy, which is used to screening the parameters based on the Morris’ elementary effect method. The beginning points of sampling trajectories are selected by using the maximin principle of Latin Hypercube Sampling method. The remaining points of trajectories are determined by using the one-factor-at-a-time design. Being different from other sampling strategies to determine the sequence of factors randomly in one-factor-at-a-time design, the proposed method formulates the sequence of factors by a deterministic algorithm, which sequentially maximizes the Euclidean distance among sampling trajectories. A new efficient algorithm is proposed to transform the distance maximization problem to a coordinate sorting problem, which saves computational cost much. After the elementary effects are computed using the sampling points, a detailed criterion is presented to select the active factors. Two mathematic examples and an engineering problem are used to validate the proposed sampling method, which demonstrates the priority in computational efficiency, space-filling performance, and screening efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.