Abstract
AbstractIn this paper we provide a thorough investigation of the cluster sampling scheme for Morris' elementary effects method (MM), a popular model‐free factor screening method originated in the setting of design and analysis of computational experiments. We first study the sampling mechanism underpinning the two sampling schemes of MM (i.e., cluster sampling and noncluster sampling) and unveil its nature as a two‐level nested sampling process. This in‐depth understanding sets up a foundation for tackling two important aspects of cluster sampling: budget allocation and sampling plan. On the one hand, we study the budget allocation problem for cluster sampling under the analysis of variance framework and derive optimal budget allocations for efficient estimation of the importance measures. On the other hand, we devise an efficient cluster sampling algorithm with two variants to achieve enhanced statistical properties. The numerical evaluations demonstrate the superiority of the proposed cluster sampling algorithm and the budget allocations derived (when used both separately and in conjunction) to existing cluster and noncluster sampling schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.