Abstract

Semi-supervised learning is an attractive method in classification problems when insufficient training information is available. In this investigation, a new semi-supervised classifier is proposed based on the concept of maximum vector-angular margin, (called S$^3$MAMC), the main goal of which is to find an optimal vector $c$ as close as possible to the center of the dataset consisting of both labeled samples and unlabeled samples. This makes S$^3$MAMC better generalization with smaller VC (Vapnik-Chervonenkis) dimension. However, S$^3$MAMC formulation is a non-convex model and therefore it is difficult to solve. Following that we present two optimization algorithms, mixed integer quadratic program (MIQP) and DC (difference of convex functions) program algorithms, to solve the S$^3$MAMC. Compared with the supervised learning methods, numerical experiments on real and synthetic databases demonstrate that the S$^3$MAMC can improve generalization when the labelled samples are relatively few. In addition, the S$^3$MAMC has competitive experiment results in generalization compared to the traditional semi-supervised classification methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.