Abstract
A modeling tool is presented that allows a complete analysis of a DC stress experiment without assuming the location and amount of trapped oxide charges and interface states. To describe the buildup of oxide damage, a semiempirical rate equation approach is outlined. A completely self-consistent calculation is presented of the time dependence of the DC stress experiment. This calculation monitors the amount and location of charges built up in the 2-D oxide region during the stress line. The model includes competing trap mechanisms such as the formation of interface states and fixed oxide traps. This permits consideration of n- and p-channel MOSFETs with the same model. The calculations are compared to DC stress measurements on n- and p-channel devices with gate lengths of 0.65 mu m that are typical for 16-Mb DRAMs.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.