Abstract

AbstractCarbon dioxide has been important in green chemistry, especially in catalytic and chemical engineering applications. While exploring CO2 to produce cyclohexanone for nylon or nylon 66 that is currently produced with low yields using harsh catalytic methods, we made the exciting discovery that carbonic acid, generated from dissolved CO2 in water, was utilized as molecular catalytic ligand to produce cyclohexanone via the hydrogenation of nitrobenzene in aqueous solution that uses Pd catalysts with a total yield higher than 90 %. Importantly, the gaseous nature of catalytic ligand H2CO3 profoundly simplifies post‐catalysis cleanup unlike liquid or solid catalysts. This new green catalysis strategy demonstrated the universality for hydrogenation of aromatic compounds like aniline and N‐methylaniline and could be broadly applicable in other catalytic field like artificial photosynthesis and electrocatalytic organic synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.