Abstract

The fracture network structure of coal is very complex, and it has always been a hot issue to characterize the fracture network structure of coal by using a tree-like branching network. In this paper, a new rough fracture permeability model of water injection coal based on a damaged tree-like branching network is proposed. In this model, fractal theory and sine wave model are used to characterize the rough characteristics of fracture structure. In addition, the applicability of the model is verified by the self-developed experimental system, and the sensitivity analysis and weight analysis of the influencing factors in the model are carried out. The results show that the factors affecting the permeability of the established permeability mathematical model are mainly the amplitude factors of sinusoidal fluctuation, length ratio, maximum branch series, number of damaged fractures, opening ratio, opening fractal dimension and initial fracture length. Among them, the sinusoidal fluctuation amplitude factor has the greatest influence on the permeability and the other two are inversely proportional. Therefore, with pulsating water injection, the frequency of changes in the water pressure was altered to improve the water injection efficiency in coal fractures with sinusoidal distribution to increase permeability. The research results provide a theoretical basis for further improving the theoretical models for seepage in porous media and fluid flow analysis of damaged tree-like branching networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.