Abstract

BackgroundThe K1, K2, and K28 toxins are usually encoded by several cytoplasmically genetic satellite dsRNAs (M1, M2, and M28), which are encapsulated with virus-like particles (VLPs) and reliant on an additional assembly of assistant yeast viruses (L-A) for their reproduction and encapsidation. Ascomycetous yeast species that have these VLPs are especially attractive targets for finding killer toxins like proteins. This is because the organisms are known in producing a large variety of secondary metabolites and extracellular enzymes, which have medical importance as alternative drugs for resistance bacterial strains, particularly multi-resistance drugs (MRD).ResultsFor the first time, 31 type strains of yeasts were tested for killer toxin production in Iraq via the measurement of gene expression of three killer toxin genes (M1, M2, and M28) within the mycovirus in yeasts. All the type strains gave an expression for the three killer toxins with variable levels. The highest expression was recorded for the killer toxin genes in Torulaspora delbrueckii followed by Wickerhamomyces anomalus. Determined antibacterial activity of two killer toxins appeared with high inhibition zone against pathogenic strains of bacteria. Cytotoxicity against human blood cells was not found. These results considered the first record of killer toxins isolated from type strains in Iraq.ConclusionThe two typical strains Torulaspora delbrueckii and Wickerhamomyces anomalus showed the highest level of gene expression for the three killer toxins.

Highlights

  • The Killer toxin 1 (K1), Killer toxin 2 (K2), and Killer toxin 28 (K28) toxins are usually encoded by several cytoplasmically genetic satellite Double strand ribonucleic acid (dsRNA) (M1, M2, and M28), which are encapsulated with virus-like particles (VLPs) and reliant on an additional assembly of assistant yeast viruses (L-A) for their reproduction and encapsidation

  • Gene expression of killer toxins The K1, K2, and K28 toxins are usually encoded by several cytoplasmically genetic satellite dsRNAs (M1, M2, and M28), which are encapsulated with virus-like particles (VLPs) and reliant on an additional assembly of assistant yeast viruses (L-A) for their reproduction and encapsidation

  • The responsibility of M dsRNAs is confined to both killer activity and self-immunity, especially in phenotypic yeast strains that are characteristic in their producing killer toxins

Read more

Summary

Introduction

The K1, K2, and K28 toxins are usually encoded by several cytoplasmically genetic satellite dsRNAs (M1, M2, and M28), which are encapsulated with virus-like particles (VLPs) and reliant on an additional assembly of assistant yeast viruses (L-A) for their reproduction and encapsidation. Ascomycetous yeast species that have these VLPs are especially attractive targets for finding killer toxins like proteins. Gene expression of killer toxins The K1, K2, and K28 toxins are usually encoded by several cytoplasmically genetic satellite dsRNAs (M1, M2, and M28), which are encapsulated with virus-like particles (VLPs) and reliant on an additional assembly of assistant yeast viruses (L-A) for their reproduction and encapsidation. The responsibility of M dsRNAs is confined to both killer activity and self-immunity, especially in phenotypic yeast strains that are characteristic in their producing killer toxins (Vepštaitė-Monstavičė et al., 2018). The yeast L-A and M viruses exploit the host’s translation machinery to produce proteins for virus capsid assembly, dsRNA replication, and toxin

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call